<u>COURSE TITLE</u>: Animal Production

SECTION: Principles of Animal Nutrition

COURSE CODE: VETM1111

Lecture 1

6. Course Objectives

List of Topics

Part 1: Principles of Animal Nutrition

- 1.1 The Animal and its Food
- 1.2 Comparison of the Digestive Systems in Farm Animals and their practical implications in the feeding of Animals and the Balancing of Rations
- 1.3 What is a Feed?
- 1.4 Components of Feeds/ Feed Nutrients
- 1.4.1 Lipids/Fats
- 1.4.2 Carbohydrates [Soluble (Sugars), Starches, Structural (Fibre)]
- 1.4.3 Proteins
 - 1.4.3.1 Animal Acids
 - 1.4.3.2 True Proteins
 - 1.4.3.3 Non Protein Nitrogen
 - 1.4.4 Vitamins
 - 1.4.4.1 Fat Soluble Vitamins
 - 1.4.4.2 Water Soluble Vitamins
 - 1.4.5 Minerals
 - 1.4.5.1 Macro Minerals
 - 1.4.5.2 Micro Minerals
- 1.4.6 Water
- 1.5 Classification of Feeds and Feedstuffs with particular reference to the Caribbean Region
- 1.6 Feed Additives

•

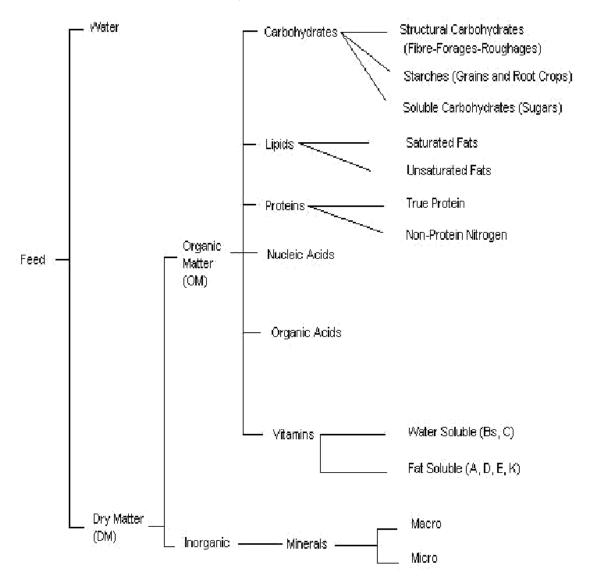
•

- 1.6.1 Probiotics
- 1.6.2 Essential Amino Acids
- 1.7 Ideal Protein Concept
- 1.8 Anti Nutritional Factors
- 1.9 What is a Ration?
- 1.10 Evaluation of Foods and Feeds:
- 1.10.1 Chemical Composition
- 1.10.2 Digestibility
- 1.10.3 Energy Content
- 1.10.4 Partitioning of Feed Energy within the Animal
- 1.10.5 Systems of expressing the Energy Value of Feeds
- 1.10.6 Feed Protein
- 1.11 Feed Intake
- 1.11.1 As Fed
- 1.11.2 Dry Matter
- 1.11.3 Voluntary Feed Intake
- 1.12 Feeding Standards
- 1.13 Ration Formulation
- 1.12.1 Monogastrics
- 1.12.2 Ruminants
- 1.14 Feed Conversion Ratio
- 1.15 Feed Conversion Efficiency
- 1.16 Economics of Feeding Animals

The role of Animal Nutrition in Veterinary Medicine

- Factor affecting animal production
- Deficiencies, disorders and diseases
- Feeding management
- Public health concerns

The role of Animal Nutrition in Veterinary Medicine


- Factors affecting Animal Production
 - -Genetics and Breeding
 - -Housing and the environment
 - -Nutrition and feeding
 - -Health and disease
 - Socioeconomics

1.3 What is a feed ?

Feed

- Feeds are naturally occurring ingredients/materials fed to animals for the purpose of sustaining them.
- Feedstuff any product, of natural or artificial origin, that has nutritional value in the ration when properly prepared
- Additives: nutritive/non-nutritive

Components of Foods/Animal Feed Ingredients (of plant and animal origin)

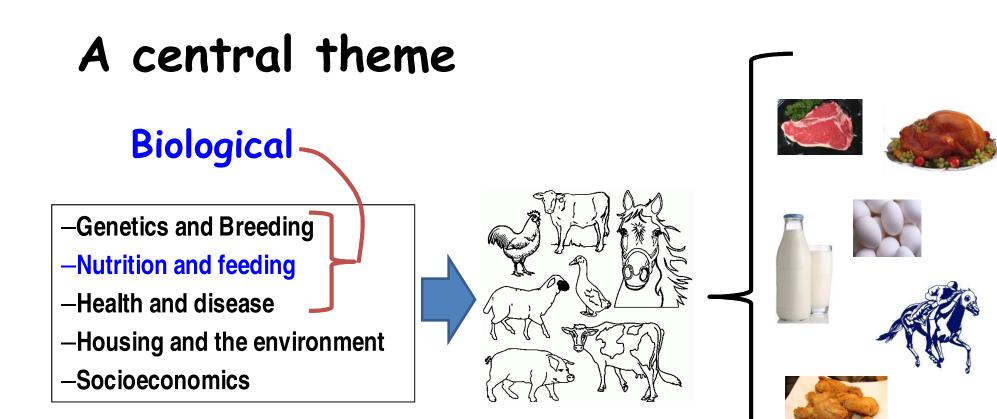
http://www12.brinkster.com/ostasp/courses2.aspx

1.4 Components of Feed/Nutrients

What are Nutrients?

- A nutrient is any food constituent that functions in support of life.
 - maintenance & production, reproduction
 - structural/cellular components
 - regulation of body processes and accessory functions: growth, reproduction, lactation etc.

Nutrition


- the various chemical and physiological reactions which change feed elements in body elements
- the process by which living organisms obtain food and use it for growth, metabolism, and repair. The stages of nutrition include ingestion, digestion, absorption, transport, assimilation, and excretion.

Classes of Nutrients

- WATER
- CARBOHYDRATES
- FATS
- PROTEINS
- MINERALS
- VITAMINS

Nutrition - what concerns us ?

- Function of nutrients (biochemistry)
 - water
 - carbohydrates
 - lipids
 - proteins
 - minerals
 - Vitamins
- sources
- digestion
- processing/usage (physiology)
- pathologies

http://www.exponent.com/files/Uploads/Images/epidemiology/meat.jpg; http://images.wisegeek.com/milk-in-bottle-and-glass.jpg; http://www.apronstringsstore.com/PDGImages/Eggs.jpg

http://cdn2.bigcommerce.com/server2200/07743/products/4407/images/8845/587034096_o__63090.1342257150.1280.1280.1280.jpg

http://0.tqn.com/d/chemistry/1/0/G/e/1/thanksgiving-turkey.jpg

http://images4.fanpop.com/image/photos/24100000/southern-fried-chicken-legs-meat-24188164-2560-1706.jpg

http://www.rkmp.co.in/sites/default/files/eis_states/A%2043_0.jpg

http://static8.depositphotos.com/1292351/805/v/950/depositphotos_8055095-Cartoon-set-of-farm-animals.jpg

http://www.google.tt/imgres?q=farm+animals&start=319&um=1&hl=en&sa=N&tbo=d&biw=1415&bih=585&tbm=isch&tbnid=D0ib4xrsGhqVXM&&imgrefurl=http://scary-pictures.feedio.net/farm-animals-for-coloring-book-stock-vector-clipart-farm-

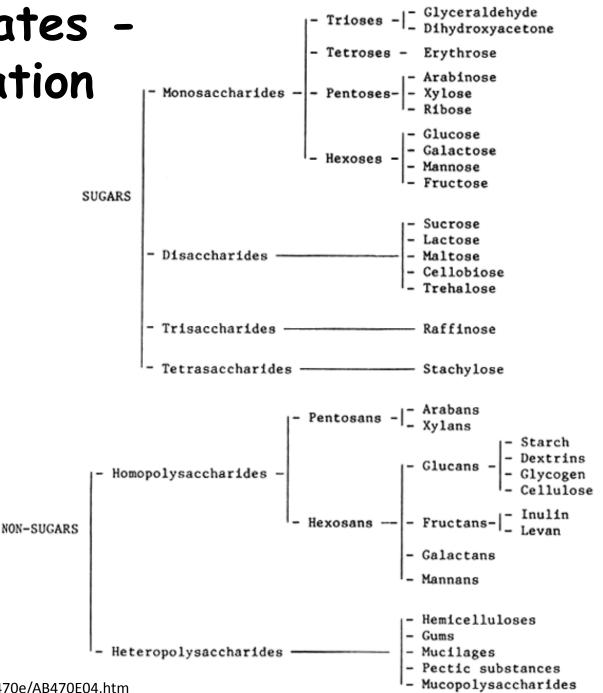
animals/watermarked.cutcaster.com*cutcaster-vector-100930307-farm-animals-for-coloring-book.jpg/&docid=GtywJFz03HYreM&imgurl=http://www.coloring-on-

line.com/image/photo1/coloring,farm,animals,horse,cow.gif&w=550&h=550&ei=6AkEUdOODYLg8AT72YCQDQ&zoom=1&iact=hc&vpx=657&vpy=226&dur=6689&hovh=224&hovw=224&tx=132&ty=78&sig=116772618370316072904&page=11&tbnh=149&thnh=149&dsh=35&ved =11:429,r:50,s:300,i:154

Water

- a solvent for transport of other nutrients and waste products through the body
- temperature regulation; high latent heat of evaporation
- gives body shape or form
- biochemical reactions
- factors affect water intake??

Water

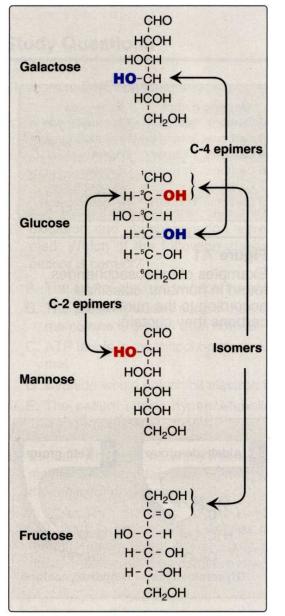

- embryo-90%; newborn-70% and adult-50%
- newborn:750 800 g water/kg body wt.
- adult: 500 g water/kg body wt.
- vital to the life of an organism and the water level in the body must be maintained.
- clean fresh water is essential for all animals

Water - Sources

- the animal obtains its water from three (3) sources:
 - drinking
 - food
 - metabolic water (metabolism: oxidation of hydrogen-containing organic nutrients).
- content in food: 60 g/kg in fresh material concentrates to > 900 g/kg in some root crops.
- Animals normally drink what they require.

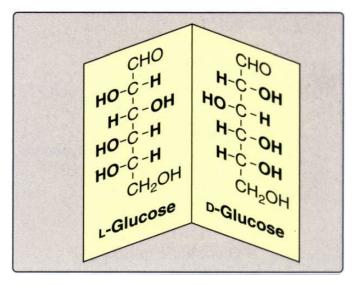
Carbohydrates

Carbohydrates classification

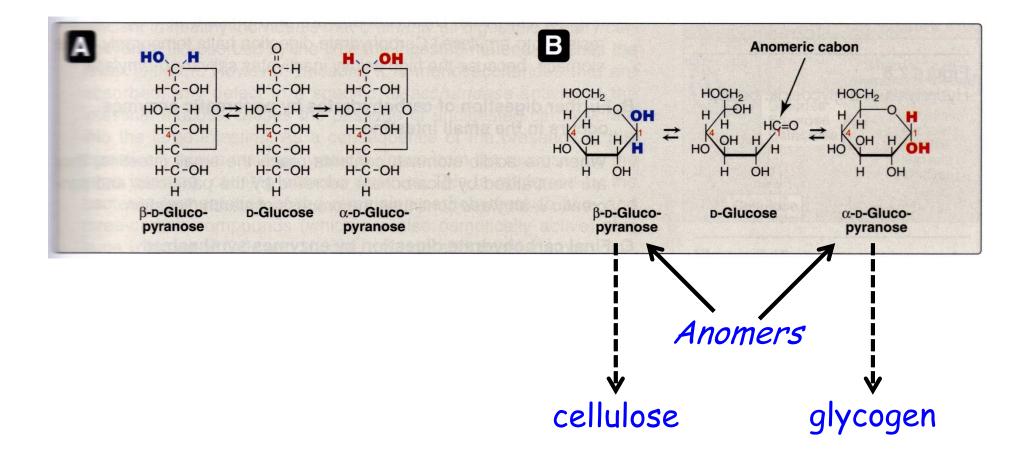


http://www.fao.org/docrep/field/003/ab470e/AB470E04.htm

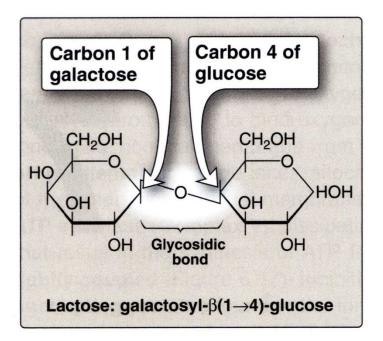
Carbohydrates - classification

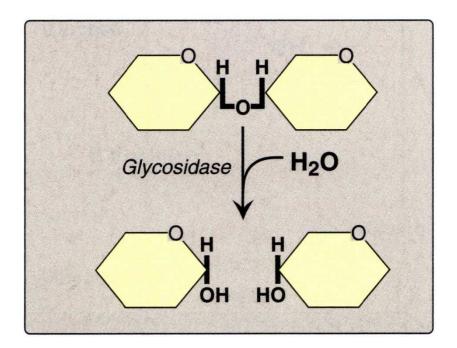

- <u>Monosaccharides</u> simple sugars glucose, fructose & galactose
- <u>Oligosaccarides</u>
 Disaccharides sucrose, maltose & lactose
- <u>Polysaccharides</u> starch, glycogen, hemicellulose & sellulose
- <u>Complex</u> attached to protein, lipids, rings, purines and pyrimidines

Carbohydrates - structure


• Isomers - same chemical formulas but different structures

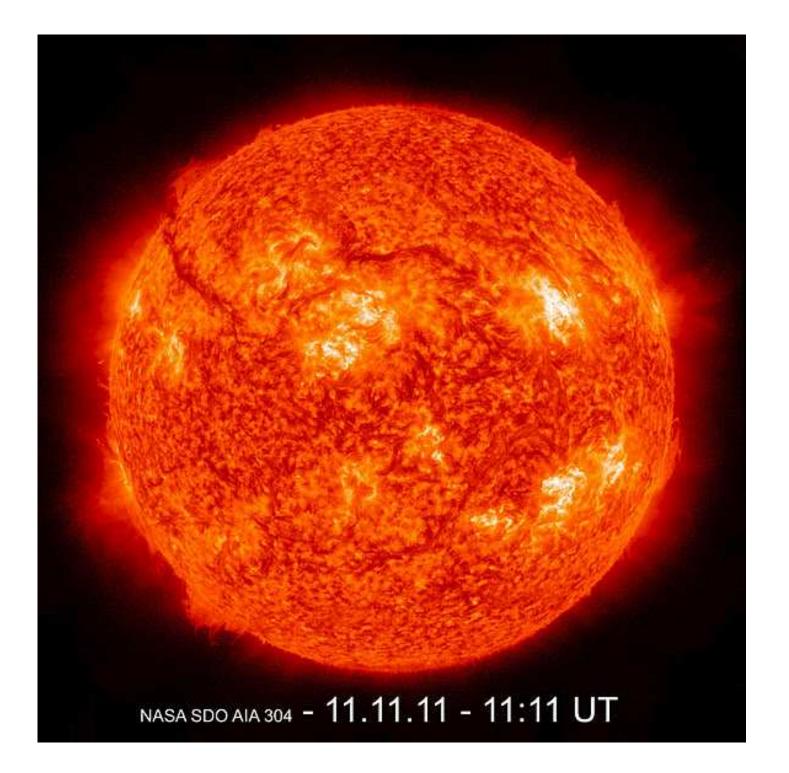
• Epimers - carbohydrate isomers that differ in configuration around only one specific C atom




• Enantiomers - pairs of structures that are mirror images of one another

Carbohydrates - cyclization

Carbohydrates – glycosidic bonds





Catalysed by glucosyltransferases

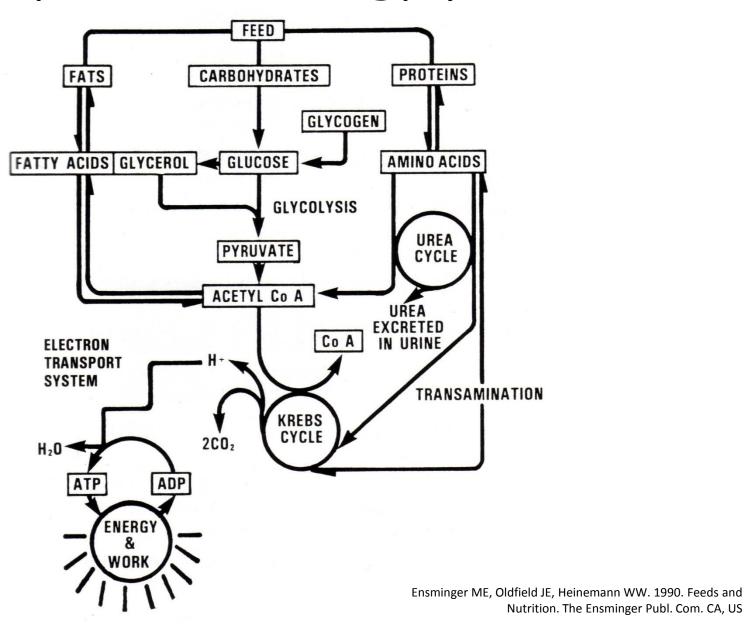
Carbohydrates

- Lactose: galactose + glucose
- Sucrose: fructose + glucose
- Maltose: glucose + glucose
- Polymers of glucose:
 - glycogen
 - starch
 - cellulose: $\beta(1\rightarrow 4)$ glycosidic bonds

containing cellulose hemicellulose sugar (maple) containing starch cellulose FORAGE containing starch sugar cellulose FRUIT containing starch suger cellulose

Ensminger ME, Oldfield JE, Heinemann WW. 1990. Feeds and Nutrition. The Ensminger Publ. Com. CA, US

Carbohydrates


<u>photosynthesis</u>

 $6CO_2 + 6H_2O + Energy \rightarrow C_6H_{12}O_6 + 6O_2$

respiration

 $C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O + Energy$

Carbohydrates - energy production

Carbohydrates -Sources

	OH H Fructose			tabolism; e.g., ATP, ADP, riboflavin, and BNA. Its reduced form, 2-deoxy D-ribose, is found in DNA.	
Xylose		Produced by hydrolysis of hay, straw, oat hulls, many	Xylose.	readed form, 2 deaky of house, is found in one.	
Xylulose	°СН₂ОН ↓ вС0 Н1	woods, and corn cobs. Xylulose is a ketose sugar formed from xylose or D-arab- itol.	In all mammals, gulonic acid may be oxidized to L-xylulose.	\boldsymbol{X} ylulose plays a role in carbohydrate metabolism	
Mexoses (C ₄ H ₁₂ O ₄)		A large group of sugars, with a significant role in nutrition.			
Fructose	OH C' I OH	Fruits; hydrolysis of sucrose from cane sugar.	Fructose.	Changed to glucose in the liver and intestine to serve as a body fuel.	
Galactose	ї І н он	Component of milk sugar.	Galactose.	Changed to glucose in the liver; cell fuel; synthesized in mammary gland to make lactose of milk; constituen of glycolipids and glycoproteins.	
Glucose	Glucose	Fruits; hydrolysis of starch, cane sugar, maltose, and lac- tose.	Glucose.	Body "sugar"; blood and tissue fluids; cell f	
Mannose MANNOSE		Hydrolysis of plant mannos- ans and gums; legumes.	Mannose.	Component of polysaccharide of albumins, globulins mucoproteins, glycoproteins.	
Digesaccharides (2 to 10 sugar units) Diseccharides (C ₁₁ H ₂₂ O ₁₁) Cellobiose	CHIRDING CH.OH	Glucose polymers. Cellobiose does not occur in free form in nature; occurs only as a component of glucose.			
Lactose GALACTOSE GLUCOSE	when they	Milk and milk products.	Glucose and galactose.	Hydrolyzed to glucose and galactose, body fuel, con stituent of milk production during lactation.	
Maltose GLUCOSE GLUCOSE		Starch by the action of malt, obtained from the malting of	Glucose.	Hydrolyzed to D-glucose, basic body fuel and metab- olite, fermentable.	
Sucrose FRUCTOSE GLUCOSE	Lactoon	barley. Cane and beet sugars, mo- lasses.	Glucose and fructose.	Hydrolyzed to glucose and fructose, body fuel.	
Trisaccharides (C18Hz2O18) Raffinose	CH.OH OV CH.OH	Legurne seeds; sugar beets.			
Tetrasaccharides (C ₂₄ H ₄₂ O ₂₁) Stachyose		Legume seeds.			
Pentasaccharides (C ₂₀ H ₈₂ O ₂₄) Verbascose		Legume seeds,			
marugars: Palysaccharides (Glycan, >10 sugar units) Homogycans (single sugar units) Pentosans (CH+QL)n Arabars (Arabinose) Xylans (Xylose) Hexosans (CH+QL)n					
Fructars Composition Inulin		Jerusalem artichokes. A variety of plants. Seeds of alfalfa, clovers, and trefoil.	Fructose. Sucrose. Glucose.	Reserve plant food material.	
Glucans Cellulose, β-linked (glucose)	₩ <u></u>	Stalks and leaves of plants, hulls of seeds.	Glucose, acetic acid.	Provide energy, hold water; reduce elevated coloni intraluminal pressure; bind zinc. Provide energy for animal needs.	
	- HZ	Starch of grains subjected to hydrolysis or action of heat.	Glucose.		
Glycogen, Q-linked (glucose)	СН20Н Н ОН Н	Meat by-products, marine by-products. Grains, rhizomes, and seeds;	Glucose.	Provide energy for enimal needs. Provide energy for enimal needs.	
Starch, <i>a</i> -linked (glucose) Small Section of Starch Molecule	6 н-сн	shoots, stems, and leaves of plants.		Thrue energy for enimer reces.	
Mannans Heteroglycans (2–6 different kinds of sugar units)	YH	Palm seeds.	Glucose.		
Gums	~	Secretions of plants; sea- weeds.	Monosaccharides and uronic acids.	Slow gastric emptying: provide fermentable mater ial for colonic bacteria with production of gas an volatile fatty acids; binds bile acids.	
Hemicelluloses (B -linked)		Cell wall plant material.	A number of monosac- charides, including glu- cose, xylose, mannose, arabinose, and galactose; acetic acid.	Provide energy, hold water, and increase fece bulk reduce elevated colonic pressure; bind bile acids.	
Muciages Mucopolysaccharides Pectins (Q -linked)		Plant secretions and seeds. Animal connective tissue. Citrus fruits, sugar beets, apples.	Amino sugars. Galacturonic acid, ga- lactose, arabinose, rham-	Provide some rigidity to animal tissues. High water-holding capacity. Used to reduce dia rhea in calves.	
Specialized compounds	сн₂онтнонтн		nose, and other sugars.		
Chitin Lignin (not a carbohydrate)	OH H OH H Cellulose	Exoskeleton of insects and crustaceans. Woody part of plants such as woods, cobs, and hulls; and in the fibrous parts of roots, stems, and leaves.		Antioxidants; bind bile acids and metals.	

Ring (Cyclic)

Structure

OH OH

ÓH

CH₂OH

NH

Classification

unit

. Ketotriose Aldotriose

Supers (water soluble): Monosaccharides (single Trioses (C₃H₈O₃)

Dihydroxyacetone Glyceraldehyde

Tetroses (C₄H₄O₄) Ervthrose

Pentoses (C.H.D.)

Arabinose

Ribose

End Products

of Digestion

Produced by oxidation

of glucose.

Arabinose. Ribose. **Nutritional Functions**

An intermediate in the metabolism of glucose

Component of every living animal cell. It occurs in a number of compounds which play crucial roles in me-

Chief Feed Sources

Glucose (fruit and plant sap).

Free pentoses constitute a

very small part of animal diets. Gums such as gum arabic. Formed through metabolic

processes.

Ensminger ME, Oldfield JE, Heinemann WW. 1990. Feeds and Nutrition. The Ensminger Publ. Com. CA, US

Proteins - biological role

Structure: Membranes, muscle, connective tissues, organs

Enzymes: catalyses numerous reactions

Hormones: regulate metabolic processes

Transport: carriers for various substances

Receptors and transmission: transmission of compound across membranes; transductions of signals intracellularly

Storage: in different tissues

Buffers: maintains cellular pH

Proteins

- long chain of amino acids
- average 16% N (100/16 = 6.25)
- >300 amino acids described in nature; only 20 found in mammalian proteins; these are coded for by DNA
- plants synthesize amino acids
- rumen microorganisms can synthesize amino acids and protein

	First Base	Second Base				Third Base	
Replication		U	С	A	G		
DNA 5'		phenylalanine	serine	tyrosine	cysteine	U	
(ds) 5 ['] A T G C C C C G T T G A ^{3'} T A C G G G G C A A C T	U	phenylalanine	serine	tyrosine	cysteine	С	
3' TACGGGGCAACT		leucine	serine	stop	stop	А	
cription		leucine	serine	stop	tryptophan	G	
of genes	С	leucine	proline	histidine	arginine	U	
RNA Single-stranded (ss) nucleotides: A,C,G,U) Translation of mRNA		leucine	proline	histidine	arginine	С	
		leucine	proline	glutamine	arginine	А	
		leucine	proline	glutamine	arginine	G	
	rabru	isoleucine	threonine	asparagine	serine	U	
Met Pro Arg - COO-		isoleucine	threonine	asparagine	serine	С	
- Met Pro Arg - COO-	A	isoleucine	threonine	lysine	arginine	А	
Biological information flow (serc.carleton.edu)		(start) methionine	threonine	lysine	arginine	G	
		valine	alanine	aspartate	glycine	U	
	on b	valine	alanine	aspartate	glycine	С	

The genetic code has 61 amino acid coding nucleotide triplets and three stop codons (Barnum SR, 2005)

glutamate

glutamate

glycine

glycine

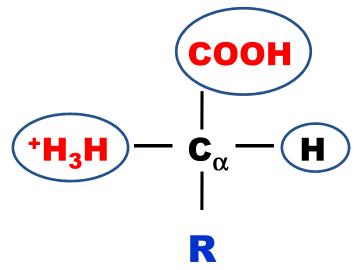
Α

G

alanine

alanine

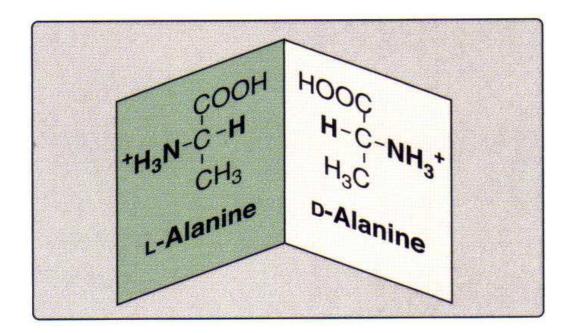
valine

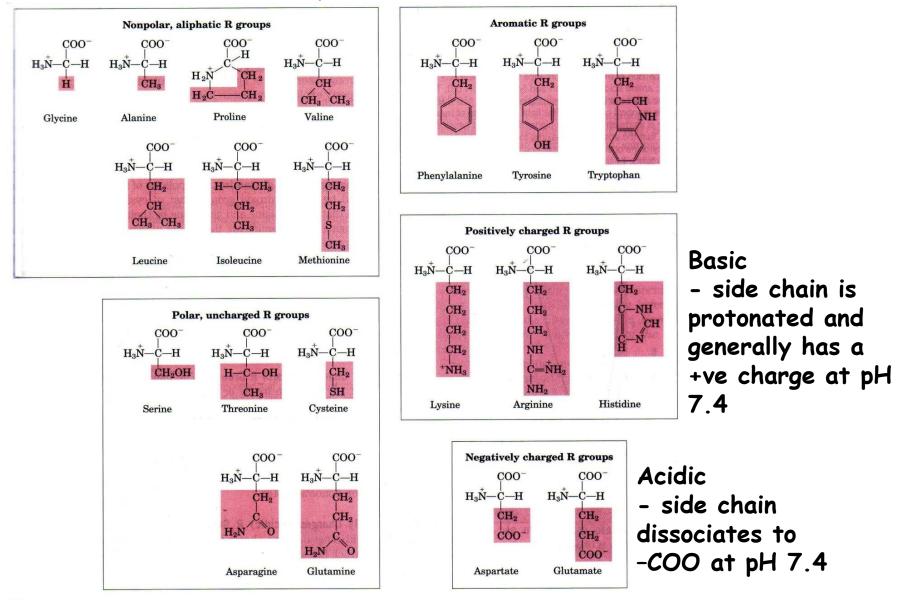

valine

G

$\alpha\text{-amino}$ acids

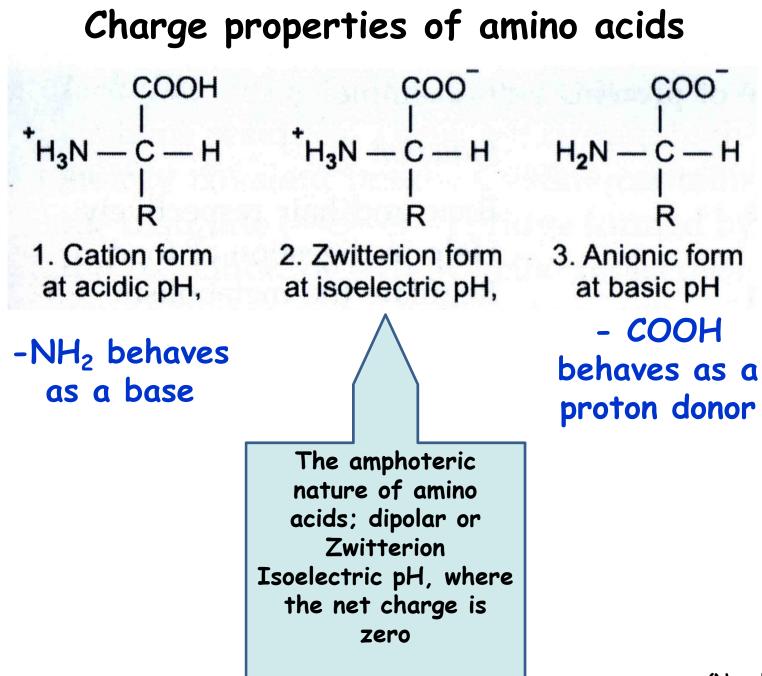
The $\alpha\text{-}carbon$ atom is attached to four different chemical groups; it is a chiral or optically active carbon atom

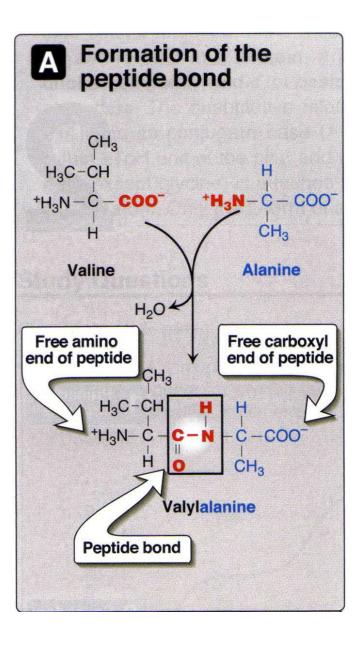

Each amino acid consists of: An chiral carbon atom (α -carbon) An amino group (-NH₂) A carboxyl group (-COOH) A distinctive side chain (R group)


Stereoisomers

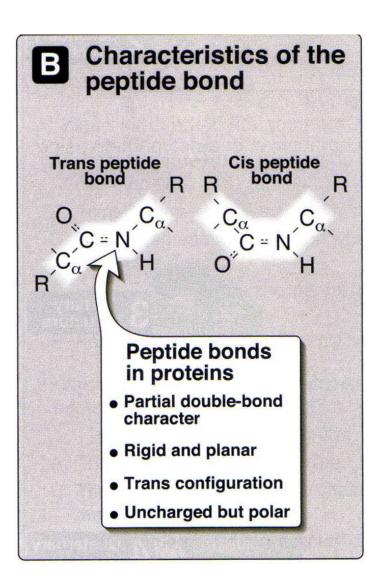
 $\alpha\text{-amino}$ acids can exist in the D or L form; mirror images of each other

All amino acids in proteins are of the L-configuration


D and L forms of alanine are mirror images


Non polar side chains

20 standard amino acids

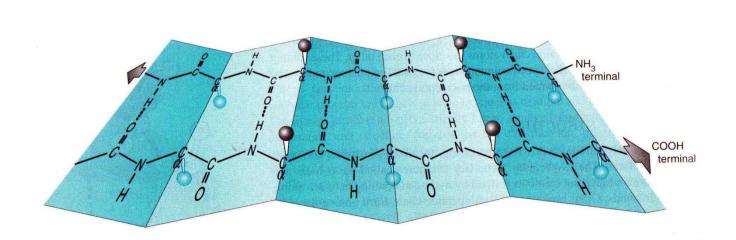

Adapted from :Nelson DL and Cox MM. 2008.Lehninger Principles of Biochemistry. Worth

(Nayak S, 2010)

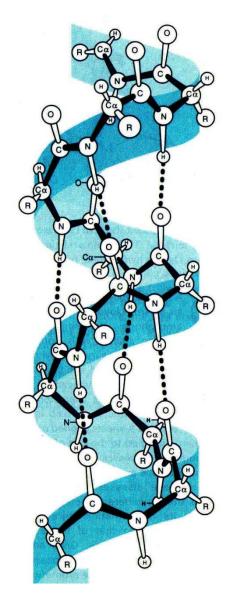
The Peptide Bond

Harvey R and Ferrier D. 2011. Lippincott's Illustrated Reviews-Biochemistry, 5th ed. LW&W, PA, USA

The four orders of protein structure


Primary structure: the sequence of the amino acids in a polypeptide chain

Secondary structure: the folding of short (3- to 30residue), contiguous segments of polypeptide into geometrically ordered units


Tertiary structure: the three-dimensional assembly of secondary structural units to form larger functional units such as the mature polypeptide and its component domains

Quaternary structure: the number and types of polypeptide units of oligomeric proteins and their spatial arrangement.

Secondary structure


A β -pleated sheet

An α -helix

Smith C, Marks AD, Lieberman M. 2005. Marks Basic Medical Biochemistry, A clinical Approach. LW&W, USA

The four orders of protein structure

Levels of structure in proteins

Adapted from :Nelson DL and Cox MM. 2008.Lehninger Principles of Biochemistry. Worth Publishers, NY, USA)

Peptides

<u>Dipeptide</u>: <u>Anserine</u> - found in skeletal muscle; activates myosin ATPase activity <u>Aspartame</u> -L-aspartylphenylalanyl methyl ester; artificial sweetener, Nutra Sweet

<u>Pentapeptide:</u> *Enkephalins* – a hypothamic hormone

<u>Nonapeptides:</u> Oxytocin and vasopressin Tripeptide:

Glutathione - glutamic acid, cysteine and glycine; in RBCs; redox reactions, decopmposed H_2O_2 and maintains cells integrity; keeps hemoglobin in a reduced state Thyrotropin - a hypothalamic hormone

Forces controlling protein structure

Hydrogen bonding: within polypeptide chains and with the surrounding medium

Hydrophobic : hydrophobic R-groups drive their amino acids into the interior of protein; this restricts the available conformations into which a protein may fold

Electrostatic : Charge-charge (oppositely charged Rgroups), charge-dipole (ionised R-groups and water), and dipole-dipole (between polar R-groups);

Van der Waals : attraction or repulsion between uncharged non-bonded atoms;

Disulphide bridges : oxidation of two cysteine residues (-S-S-); strong high energy covalent bonds

Classification of proteins

Based on solubility

Table 4.3: Proteins of different soluble property				
Class	Soluble in	Example		
Albumins	Water	Serum albumin, egg albumin		
Globulins	Dilute salt solutions	Serum globulins		
Histones (Basic proteins)	Dilute acids	Nucleoproteins, histones		
Scleroproteins	Insoluble in H ₂ O	Collagen, elastin		

Based on shape

- Gobular (compactly folded and coiled)
- Fibrous (elongated)
- DNA-binding
- Transmembrane

Based on composition

• Simple

- Conjugated proteins
- Derived proteins

Example for conjugated proteins	Nonprotein part present + protein
 Hemoglobin (Hb) Nucleoprotein Lipoprotein Phosphoprotein (Casein) 	Heme + globin DNA + histone Lipids + apolipoprotein Phosphate + protein
5. Glycoprotein (egg albumin)	Carbohydrate + protein
6. Rhodopsin	11-cis retinal + opsin (protein)
7. Ferritin	Iron + apoferritin

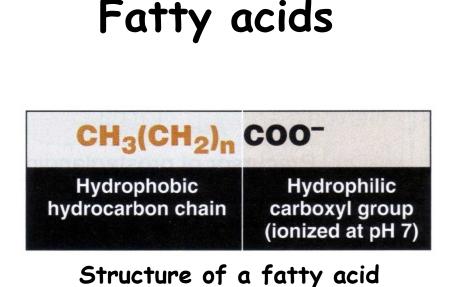
Essential and Nonessential Amino Acids

Our cells can synthesize	Nonessential	Essential	Our cells cannot synthesize
them	Alanine	Arginine*	them
	Asparagine	Histidine	
	Aspartate	Isoleucine	
	Cysteine	Leucine	
	Glutamate	Lysine	
	Glutamine	Methionine*	
		_	(Nayak S, 2010)

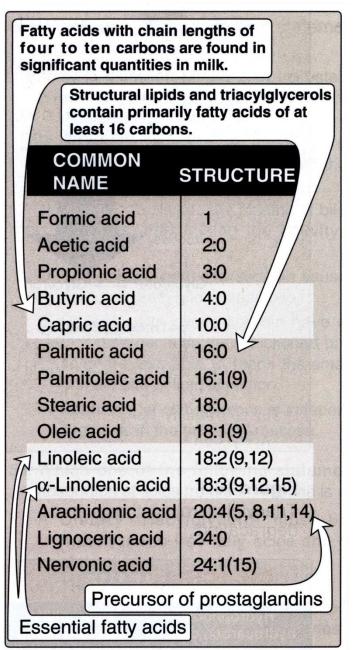
Proteins-Sources

CLASSIFICATION OF SOME COMMON PROTEINS Type **Chemical Properties General Comments** Simple proteins: Albuminoids (sclero-Insoluble in water; highly re-Includes collagen, elastin, and proteins) sistant to enzymatic digestion; keratin; common in supporting some become gelatinous upon tissues; sometimes referred to as boiling in water or dilute acids fibrous protein. or bases. Readily soluble in water; co-Present in egg, milk, and se-Albumins agulate upon heating. rum. Globulins Low solubility in water; solu-Abundant in nature; examples bility increases with the addition are serum globulins, muscle globof neutral salts; coagulates upon ulins, and numerous plant globuheating. lins. Glutelins Insoluble in water: soluble in Abundant in cereal grains; an dilute acids or bases. example is wheat gluten. Insoluble in water, absolute Zein in corn and gliadin in wheat Prolamins alcohol, or neutral solvents; soluare prolamins. ble in 80% ethanol. **Conjugated proteins:** Chromoproteins Combination of a protein and Common example is hemoglobin a pigmented (colored) substance. -hematin and protein. Combination of protein and Found in fiber of clotted blood Lecithoproteins lecithin. and vitellin of egg. Water-soluble combination of A vehicle for the transport of Lipoproteins fat and protein. fat in the blood; all contain triglycerides, cholesterol, and phospholipids in varying proportions. Proteins that are complexed One example is transferrin, a Metalloproteins with metals. metalloprotein that can bind with copper, iron, and zinc. Various enzymes contain minerals. Examples are mucin from the Mucoproteins or aly-Contain carbohydrates such as mannose and galactose. mucous secretions which act as coproteins protectants and lubricants in many parts of the body. Combination of proteins and Present in germs of seeds and Nucleoproteins nucleic acids. glandular tissue. Phosphoproteins Compounds containing protein Casein in milk and ovovitellin in and phosphorus in a form other eggs, are examples. than phospholipid or nucleic acid.

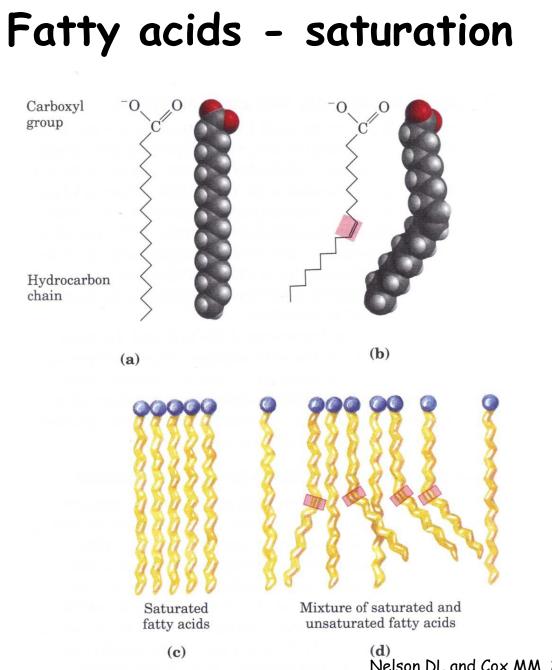
TABLE 4-5

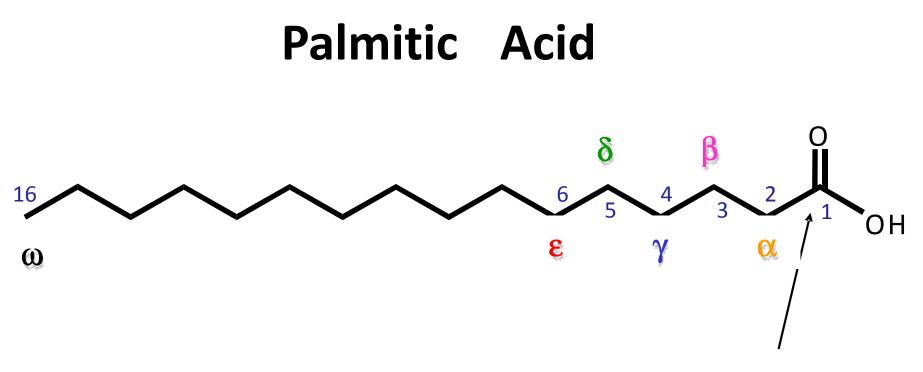

Lipids

- Biomolecules
- Amphipathic (polar and nonpolar)
- Low solubility in water; high solubility on non polar solvents
- highly reduced forms of carbon; yield large amount of energy upon oxidation in metabolism;

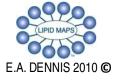

Lipids are fatty acids and their derivatives, and substances related biosynthetically or functionally to these compounds. (http://lipidlibrary.aocs.org/index.html)

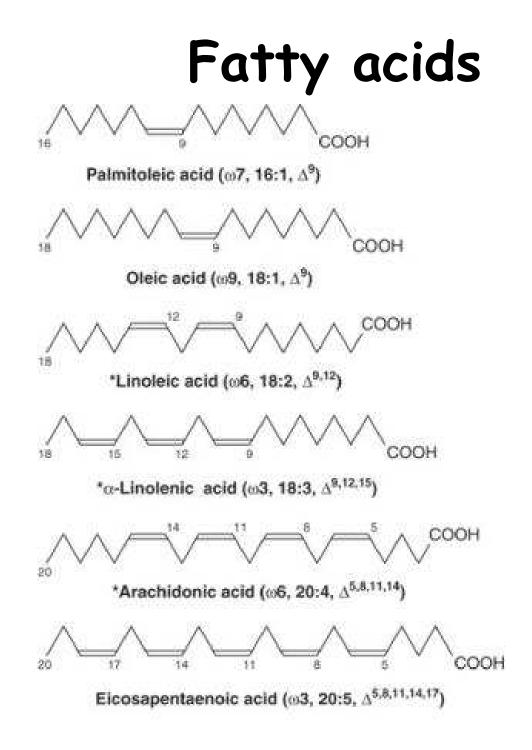
Biological Functions of Lipids


- Structural elements (phospholipids, cholesterol)
- Energy storage (fatty acids, triacylglycerols)
- Hormones (estrogen, testosterone)
- Enzyme cofactors (coenzyme A)
- Electron carriers (coenzyme Q)
- Light-absorbing pigments (carotenoids)
- Emulsifying agents (bile salts)
- Intracellular messengers (phosphatidyl inositol)


Harvey R and Ferrier D. 2011. Lippincott's Illustrated Reviews-Biochemistry, 5th ed. LW&W, PA, USA

Some fatty acids of physiological importance




Nelson DL and Cox MM. 2008.Lehninger Principles of Biochemistry. Worth Publishers, NY, USA

Carbonyl carbon

- ω omega, always the last alkyl carbon
- **e**psilon, fifth carbon after the carbonyl
- δ delta, fourth carbon after the carbonyl
- Y gamma, third carbon after the carbonyl
- beta, second carbon after the carbonyl
- 👯 alpha, first carbon after the carbonyl

cienceforums.net

Lipids - Sources

TABLE 4-3 CLASSIFICATION OF LIPIDS

Type of Lipid	Example	Chemistry	General Comments
Simple lipids: Neutral fats	Triglycerides (triacylglycerols).	Esters of fatty acids with glycerol; ratio of 3 fatty acids to 1 glycerol.	Most abundant lipids in nature. Mixed triglycerides (those in which at least 2 fatty acids are different) account for 98% of the fats in feeds and over 90% of fat in the body.
Waxes	Beeswax.	Esters of fatty acids with high-molecular-weight alcohols other than glycerol. This group includes the esters of cho- lesterol, vitamin A, and vitamin D.	More important in commerce than in animal nutrition; occur widely in cuticle of leaves and fruit.
Compound lipids: Phospholipids	Lecithins. Cephalins. Lipositols.	C ompounds of neutral fat, a phosphoric acid, and a nitro- genous base (choline, ethanolamine, or serine); water-soluble.	Lecithins are largest group of phospholipids. Lecithin may be obtained from egg yolks or soybeans.
Glycolipids	Cerebrosides. Gangliosides.	Sugar-(carbohydrate)-containing fatty acids plus nitrogen.	Sugar can be glucose or galactose; found in nervous tissue; component of cell membrane.
Lipoproteins	Chylomicrons. Very low density lipoproteins (VLDL). Low density lipoproteins (LDL). High density lipoproteins (HDL).	They all contain protein, triglycerides, phospholipids, and cholesterol; but in varying amounts.	The lipoproteins, synthesized in the liver, are composed of about ¼ to ⅓ protein, with the remainder lipids. Means of transporting lipids in the blood.
Derived lipids: Fatty acids	Palmitic acid. Oleic acid. Stearic acid. Linoleic acid.	Generally have one acid group (COOH); may be saturated, or unsaturated—contain 1 or more double bonds.	In most cases, there is an even number of carbon atoms in the naturally-occurring fatty acids. There are few odd-numbered carbon atom fatty acids in nature. Release of fatty acids from triglyceride releases glycerol.
Steroids	Cholesterol. Ergosterol. Cortisol. Bile acids. Vitamin D. Androgens, estrogens, and progesterone.	Derivatives of the perhydrocyclopentan-o-penanthrene nu- cleus (chemical structure is a series of rings).	One of the most studied classes of lipids. Collectively many of these are referred to as steriod hormones— hormones of the adrenal gland, testes, and ovaries.
Hydrocarbons	Terpenes.	Compounds of hydrogen and carbon only.	Includes a series of oils (such as camphor), resin acids, and plant pigments. Beta-carotene is an example of an important terpene.

Ensminger ME, Oldfield JE, Heinemann WW. 1990. Feeds and Nutrition. The Ensminger Publ. Com. CA, US